If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6.5t^2+65t+71.5=0
a = 6.5; b = 65; c = +71.5;
Δ = b2-4ac
Δ = 652-4·6.5·71.5
Δ = 2366
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2366}=\sqrt{169*14}=\sqrt{169}*\sqrt{14}=13\sqrt{14}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(65)-13\sqrt{14}}{2*6.5}=\frac{-65-13\sqrt{14}}{13} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(65)+13\sqrt{14}}{2*6.5}=\frac{-65+13\sqrt{14}}{13} $
| 3/2(2x+6)=3x=9 | | 3y+7=12y | | -X(-0.2+x)=0 | | 2x/7=12/14 | | -4=0.5(10w+12)+5w | | 7=5p-3 | | 8(a+2)+2(-2+3a)= | | 5/4x-1/3=3/5 | | 8x(x+9)=5x+45 | | 13/39=14/x | | 6-h=1 | | (y+1)^2-20=0 | | -6(2.5c+2)=16.5-4c | | 0.7/x=70/500 | | 13=3+x/2 | | -3=2p-7 | | x=−126=−2 | | 2410=6z+10 | | 10+3u=1 | | 2/5r=12/25 | | 3p-28=9 | | (2x+5)^2=9 | | 9+2w=1 | | -15.5=-3s+8.5s | | 2(x-2)-5(x-5)=4(x-8)-2(x-2 | | -128=9x-17 | | 48=9v+3 | | -x/9+4=20 | | n/5-4=13 | | 4-2(1+3.5d)=22.5 | | 5(2x-1)-4x=-2x+25-2x | | 7x+44=2x-1 |